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Abstract—Diffractive Deep Neural Network (D2NN) can work as a
neural network with the diffraction of light and have demonstrated
orders of magnitude performance improvements in computation speed
and energy efficiency [1], [2]. As a result, there have been increasing
interests in applying D>NNs into security-sensitive applications, such as
security gate sensing, drug detection, etc. However, the comprehensive
vulnerability and robustness of optical neural networks have never been
studied. In this work, we develop the first adversarial attack formulations
over optical physical meanings, and provide comprehensive analysis of
adversarial robustness of D°NNs under practical adversarial threats
over optical domains, i.e. Phase attack, Amplitude attack, and Complex-
domain attack, which can be realized in D>NN system using amplitude
and phase modulators. We demonstrate that the proposed Complex
Fast Gradient Sign Method (Complex-FGSM) can successfully generate
minimal-changed (small epsilon) physically feasible adversarial examples
targeting pre-trained D>NNs model on MNIST-10 dataset, which bring
down its accuracy to < 20% from 95.4%.

Index Terms—Optical neural networks, security, adversarial learning

I. INTRODUCTION AND MOTIVATION

Nowadays, there have been increasing efforts in leveraging op-
tics to overcome defeats of conventional Neural networks, which
will bring significant advantages in power efficiency, parallelism,
and computational speed [1]-[4]. Diffractive Deep Neural Networks
(D?NNs) utilize the diffraction of light in complex domain to form an
optical feed-forward network similar to conventional neural network
[1]. The forward function in D®NN is based on free-space light propa-
gation, featuring millions of neurons in each layer interconnected with
neurons in neighboring layers, making the system able to complete
parallel tasks in the speed of light [1] [2]. Moreover, physical
parameters in diffractive propagation are differentiable such that
they can be effectively optimized via conventional backpropagation
algorithms using autograd mechanism [1] [2]. Increasing efforts
are devoted to applying such networks in real-world scenarios such as
medical sensing, security screening, drug detection, and autonomous
driving, which are usually highly sensitive to the security threats
[5]. However, very few researches have been conducted in studying
comprehensive vulnerability and robustness of neural networks in
optical domain (complex tensor domain).

As deep neural networks have been widely used in real-world
applications, security and integrity of the applications pose great
concern. In some cases, adversaries can be dangerous as it may
be imperceptible to human eyes but can force a trained model to
produce incorrect outputs [6]. Specifically, with limited exploration of
adversarial attack in optical domains under domain-specific physical
meanings, the adversarial threats in optical neural networks remain
unknown. Thus, this work introduces three attack modes under phys-
ical meanings over optical domain, including a) Amplitude attack, in
which only the real part in perturbation will be applied to the Real
part of the input, b) Phase attack, in which only the Imaginary part
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Fig. 1: Tllustration of D>NNs system, training, and adversarial
attack using C-FGSM - Note that in training phase, the optical phase
encoded by phase modulators are trainable parameters 6 optimized
through gradient descent. The adversarial examples are generated
with C-FGSM according to the loss function £. An inference example
with original MNIST image (bottom left) shows input and output
observed by detector, where class 7 is generated. An adversarial
example (bottom right) is however misclassified to 3.

in perturbation will be applied into the input, ¢) Complex-domain
attack, where the perturbation noise is a complex tensor that will
be applied to the input data. Note that in D?NNs, the image is
encoded using light source, where the original image is encoded using
Amplitude (real part), and Phase remains zero (imaginary), such that
the inputs are complex tensors. For the attack algorithm, we modify
the Fast Gradient Sign Method (FGSM) in complex domain, namely
Complex-FGSM (C-FGSM). Moreover, we explore the effectiveness
of C-FGSM by adjusting the hyperparameter epsilon that describes
how much the original data is modified. This is believed to be the
first work on adversarial robustness of optical neural networks under
physical meanings.

II. METHODS AND RESULTS

Our experiment setup is shown in Figure 1. The original MNIST
images with size of 28 x 28 are first expanded to 200 x 200 to fit our
Spatial Light Modulator (SLM) based optical system setup. Three
layers are implemented in the model. Each layer is composed of a
diffractive layer and a phase modulator. The diffractive layer is used
to diffract light so that each pixel in the layer can work as a neuron in
conventional neural network, i.e., each diffraction layer mimics one
conventional linear neural layer. The phase information encoded by



